
LITERATURE CITED 

i. Ya. Yu. Akhadov, Dielectric Properties of Pure Liquids [in Russian], Standartov, 
Moscow (1972). 

2. L. Maier and A. Persons, "Methods using electric fields," in: Methods for Study of 
Rapid Reactions, G. Hemmins (ed.) [Russian translation], Mir, Moscow (1977), pp. 239- 
267. 

3. O. S. Molovanov and N. P. Sobenin, Ultrahigh Frequency Techniques [in Russian], Atomiz- 
dat, Moscow (1980). 

4. B. N. Tyutyunikov, Chemistry of Fats [in Russian], Pishch. Promyshl., Moscow (1966). 
5. E. Ikada, K. Yamamoto, and M. Ashida, "Dielectric properties of the hydrogen-bonded 

liquids. Stearic effects on dielectric properties in glycerol and acety lated glycerols," 
Bull. Chem. Soc. Jpn., 53, 865-868 (1980). 

6. V. N. Hudaiberdyev, "Investigation of particularities found in intermolecular inter- 
action for glycerine solution with ordinary and heavy waters through acoustic methods," 
Acta Phys. Slov., 3-3, Nos. 5-6, 275-282 (1983). 

TEMPERATURE RESISTANCE COEFFICIENT OF COMPOSITE RESISTIVE 

MATERIALS IN THE MIXED-STRUCTURE APPROXIMATION 
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and V. I. Bus'ko 
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A method of calculating the temperature resistance coefficient and its 
temperature dependence for resistive materials in the approximation of 
a matrix-statistical structure is outlined. 

Recently, the traditional empirical selection of optimal compositions of composite struc- 
tures has been gradually replaced by a calculation based on the approximation of real hetero- 
geneous systems by hypothetical structural models: The matrix model (with isolated inclusions 
of one phase in the other); the statistical model (with interpenetrating phases forming con- 
tinuous three-dimensional "networks"); and the mixed model, which is a combination of the 
matrix and statistical models [i, 2]. 

Resistive cermet materials may be adequately represented by the two latter models, 
corresponding to the two conduction mechanisms discussed in the literature [3]: the contact 
mechanism (statistical structure) and the tunnel-barrier mechanism (mixed structure). 

The most effective method of reducing the temperature resistance coefficient (TRC) of 
composite resistors is to use the thermocompensation effect [4], when the conducting sub- 
system consists (as a minimum) of two phases with opposite types of temperature dependence 
of the electrical conduction; semiconducting and metallic. 

To realize the statistical method in practice, it is necessary to have monodisperse 
filler powders with identical particle materials. In constructing resistive materials with a 
matrix-statistical structure, no such difficulties are observed. 

The aim of the present work is to calculate the TRC of resistive materials in the approxi- 
mation of a matrix-statistical structure, which may be represented in the form of a hetero- 
geneous system consisting of two subsystems: The conducting subsystem and the dielectric sub- 
system. The conducting subsystem is of matrix type and consists either of a semiconductor 
dispersed in a metallic matrix, or of a metal dispersed in a semiconducting matrix. 

First, consider the calculation of the electrical conductivity of the conducting sub- 
system, in the form of a metallic matrix with inclusions of spherical semiconducting particles. 

D~ I. Mende!eev Moscow Chemical-Engineering Institute. Translated from Inzhenerno-Fizi- 
cheskii Zhurnal, Vol. 49, No. 3, pp. 477-481, September, 1985. Original article submitted 
August 13, 1984. 

0022-0841/85/4903- 1105509.50 �9 1986 Plenum Publishing Corporation 1105 



- / 2  - ~ ~ ~ 

TRC ;0 # 

-4 / ~ 3  

_ 8 ~  6 

r 
-/0 

-I2 

I #s 

4O0 

I 
I 

Fig. i Fig. 2 
Fig. i. Dependence of TRC (deg -z) on volume fraction of semicon- 
ductor @~ and metallic ~2"' inclusions for ~ = 10 -3 deg -z, E = 
10 -2 eV, @z = 0.3, 0.4, 0.5. For ~, AB = 1 (i), i0 (2), 10-z(3), 
102 (4), 10 -2 (5), 103 (6), 10 -3 , i0 -~, 10 -5 , i0 ~, 105 (7); for 
@~', AB = 1 (8), i0 -z (9), i0 (i0), 10 -2 (ii), 102 (12), 10-3(13), 
103 , i04, l0 s , i0 -4, i0 -s (14). 

Fig. 2. Dependence of TRC (deg -• on temperature (~ in the re- 
gion of optimal compositions for ~ = 10 -3 deg -I, E = 10 -2 eV. For 
~, AB = i, ~ = 0.47 (i), i0, 0.59 (2); I0 -~, 0.87 (3); for ~'= 
0.55 ( 4 ) ;  i0, 0.96 ( 5 ) ;  10 - z ,  0 .85  ( 6 ) .  

If no account is taken of the slight corrections introduced by some authors, all the for- 
mulas proposed for the calculation of the physical characteristics of matrix systems may 
be reduced to the following expression 

~M=~2 I -6  I - - ~  ~2 ' 

which, as shown in [i], is valid for the whole concentration range of inclusions and agrees 
with theoretical [5] and experimental [6] dependences of the critical concentration (thre- 
shold level) on the size ratio of the conducting and dielectric particles. Let o 2 = i/ 
{B[I + ~(T - 273)]} and o 3 = Aexp (-E/kT). Then, calculating the electrical conductivity 
of the matrix conducting component o M its TRC may also be found 

1 d ~  
~,, - -  ( 2 )  

(~ ,  d T  

The d e r i v a t i v e  doM/dT in  Eq. (2)  i s  found  by d i f f e r e n t i a t i n g  Eq. ( 1 ) ,  which  i s  p r e l i m i n a r i l y  
b rough t  to  t h e  form 

o2~3 (1 -F, 2r + 2(~ 2 (1 --(p~) (3)  
G, = (% (1 - -  ~p~) q- ~., (2 q- ~p~) ' 

2 "(1 - -  q0~)]' [~3 (1 - -  qv~) q- ~ (2 q- q~)] cir. 1,~2~3(I + 2 G) + o~ 
d T  [c% (1 - -  qD~) q- ~.,. (2 q- r ~ 

[(~9(Y3 (1 --}- 2q)3) -]- 20"~ (1 - -  q)3) ] [0' 3 ( l  - -  q)3) -~" (~2 (2 q- qo~)]' (4)  
I~.~ (1 - -  %) + ~ (2 + G)I" 

Taking account of the above values of 0 2 and o3, the final expression for doM/dT is written 
in the form 
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where 

dc 5 . . . .  r . d~:~ E A  exp  ( - -  E / k T )  

d T  B I 1 4-  r ( T  - -  273)] ~ d T  k T  ~ 

The electrical conductivity of the two-component statistical system calculated from 
the Bruggeman-Odelevskii generalized-conduction formula [i, 7] is in complete agreement 
with the dependence introduced on the basis of the theory of the conduction of an effec- 
tive medium [8] 

O t -- (7 c ( l ~  -- (3" c 
- -  (91 + r = O, (6) 
o~ 1 -+- 2oc %, q- 20~ 

where ~M = 1 - 0r 

For the case of a dielectric subsystem considered here, the composition-property 
function of the statistical model is of threshold type (with a threshold level equal to 2/3 
for a cubic lattice), which is in good agreement with the numerous experimental data [9]. 
Taking into account that o ! = 0 and ~I < 2/3, the solution of Eq. (6) is written in the 
form 

(!~, (2 -- 3(91) 
~c - -  ( 7 )  

2 

The TRC of the mixed structure is determined by the TRC of the conducting substructure 
calculated from Eq. (5). This is confirmed by systematic transformation of an expression 
of the form 

(~o = - -  1 / ~ .  d ~ c / d T .  ( 8 )  

The electrical conductivity of the conducting subsystem, in the form of a semiconduct- 
ing matrix with metallic inclusions, is calculated analogously. 

Calculations are performed for typical parameters of fillers of precision resistive 
materials: E = 10 -2 eV, ~ = 10 -3 deg -I, ~l = 0.3, 0.4, 0.5. The influence of the constants 
A and B on the TRC of the resistive material may be characterized by the product AB. It 
is a dimensionless parameter, which varies in the range 10-s-105. 

The dependence of the TRC on the volume fraction of semiconducting @~ and metallic ~' 
inclusions (Fig. i) shows that a resistive material with "zero" TRC may only be obtained 
in a limited range of AB; 0.i-i0. The dependences of the TRC on ~ and ~"'3 obtained for 
AB < 0 and AB > i0 may be explained in that both when AB < 0.I (the electrical conductivity 
of the metallic phase is higher than that of the semiconducting phase) and when AB > i0 
(the opposite case), the resistance of the conducting subsystem may be written in the form 
of a series of parallel combination of two conductors. In both cases, however, it is deter- 
mined by the resistance of the matrix. 

It follows from the temperature dependence of the TRC in the region of optimal compo- 
sition (Fig. 2) that with increase in temperature the TRC of the resistive material changes 
sign from negative to positive, reflecting the experimental U-shaped dependence of the re- 
sistance on the temperature [i0]. 

NOTATION 

o M, electrical conductivity of matrix system; Oc, electrical conductivitv of mixed sys- 
tem; o~, electrical conductivity of dielectric subsystem; o2, electrical conductivity of 
matrix phase; 03, electrical conductivity of inclusions; ~, volume fraction of dielectric 
subsystem; ~M, volume fraction of conducting subsystem; ~, volume of fraction of inclusions 
with respect to matrix material; ~t3', volume fraction of semiconducting inclusions with res- 
pect to matrix material; ~, volume fraction of metallic inclusions with respect to matrix 
material; ~, TRC of metal, aM, TRC of matrix system; ~c, TRC of mixed system; B, resistivity 
of metal at 273~ k, Boltzmann constant; A, electrical conductivity of semiconductor at 
infinitely large temperature; E, activation energy of electrical conductivity of semicon- 
ductor. 
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MASS TRANSFER WITH "MEMORY" IN ELECTROCHEMICAL PROCESSES 

L. S. Kalashnikova UDC 541.138:66.015.3 

Diffusion processes in porous electrodes are investigated on the basis of 
mass-transfer equation with "memory." The equation is analyzed with the 
application of the Laplace transform. 

The analysis of mass-transfer processes in porous electrodes is of major importance in 
the investigation of many electrochemical processes, in particular the operation of electro- 
chemical current sources. A complicated interaction takes place between the electric and 
concentration fields in a porous electrode, where mass transfer is accompanied by electro- 
chemical reactions. The large difference between the characteristic time constants of the 
diffusion and electrical processes means that they can be considered independently. The 
variation of the concentration field in the diffusion mode of operation of a porous elec- 
trode is described by an equation of the form [i] 

0c 
= D * A c  - -  koC. ( 1 ) 

This equation has been derived on the assumption that the expenditure or accumulation of 
active substance as a result of electrochemical reactions takes place uniformly. However, 
this assumption is an idealization, and in real electrodes the instantaneous mode of opera- 
tion of the electrode is observed to depend on the nature of the process at previous times, 
i.e., on the history of the process. 

Mass transfer of this nature can be modeled if the following expression is used to des- 
cribe the transfer flux [2]: 

q m  = - -  D *  grad c - -  .f" D * D '  ('~ - -  O) grad c (r, 0) dO. ( 2 )  
0 
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