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TEMPERATURE RESISTANCE COEFFICIENT OF COMPOSITE RESISTIVE
MATERIALS IN THE MIXED-STRUCTURE APPROXIMATION

0. A. Vasilenko, A. A. Maier, UDC 541.123:537.311.3.001.24
V. A. Chashchin, E. N. Gulaeva,
and V. I. Bus'ko

A method of calculating the temperature resistance coefficient and its
temperature dependence for resistive materials in the approximation of
a matrix—statistical structure is outlined.

Recently, the traditional empirical selection of optimal compositions of composite struc-
tures has been gradually replaced by a calculation based on the approximation of real hetero-
geneous systems by hypothetical structural models: The matrix model (with isolated inclusions
of one phase in the other); the statistical model (with interpenetrating phases forming con-
tinuous three-dimensional "networks'); and the mixed model, which is a combination of the
matrix and statistical models [1, 2].

Resistive cermet materials may be adequately represented by the two latter models,
corresponding to the two conduction mechanisms discussed in the literature [3]: the contact
mechanism (statistical structure) and the tunnel —barrier mechanism (mixed structure).

The most effective method of reducing the temperature resistance coefficient (TRC) of
composite resistors is to use the thermocompensation effect [4], when the conducting sub-
system consists (as a minimum) of two phases with opposite types of temperature dependence
of the electrical conduction; semiconducting and metallic.

To realize the statistical method in practice, it is necessary to have monodisperse
filler powders with identical particle materials. In constructing resistive materials with a
matrix—statistical structure, no such difficulties are observed.

The aim of the present work is to calculate the TRC of resistive materials in the approxi-
mation of a matrix—statistical structure, which may be represented in the form of 5 hetero-
geneous system consisting of two subsystems: The conducting subsystem and the dielectric sub-
system. The conducting subsystem is of matrix type and consists either of a semiconductor
dispersed in a metallic matrix, or of a metal dispersed in a semiconducting matrix.

First, consider the calculation of the electrical conductivity of the conducting sub-
system, in the form of a metallic matrix with inclusions of spherical semiconducting particles.
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Fig. 1. Dependence of TRC (deg™') on volume fraction of semicon-
ductor ¢4 and metallic ¢,"' inclusions for a = 1073 deg™?!, E =
1072 eV, ¢, = 0.3, 0.4, 0.5. For ¢4, AB=1 (1)» 10 (2), 1071 (3),
102 (4), 1072 (5), 10® (6), 1073, 10™*, 10~%, 10*, 10% (7); for
¢5', AB =1 (8), 107* (9), 10 (10), 1072 (11), 102 (12), 1073(13),
103, 10%, 105, 107%, 1075 (14).

Fig. 2. Dependence of TRC (deg™!) on temperature (°K) in the re-
gion of optimal compositions for a = 1073 deg™!, E = 1072 eV. For
oY, AB = 1, o¥ = 0.47 (1), 10, 0.59 (2); 10-1, 0.87 (3); for ¢U'=
0.55 (4); 10, 0.96 (5); 1071, 0.85 (6).

If no account is taken of the slight corrections introduced by some authors, all the for-
mulas proposed for the calculation of the physical characteristics of matrix systems may
be reduced to the following expression

aM==o2<14- T ki ), (1)
"—(P3 Oy
3 + 03 — 0,
which, as shown in [l], is valid for the whole concentration range of inclusions and agrees
with theoretical [5] and experimental [6] dependences of the critical concentration (thre-
shold level) on the size ratio of the conducting and dielectric particles. Let o, = 1/
{B{1 + a(T — 273)]} and o5 = Aexp (~E/kT). Then, calculating the electrical conductivity

of the matrix conducting component oy its TRC may also be found
avz___l_%. (2)
) g, dT

The derivative doy/dT in Eq. (2) is found by differentiating Eq. (1), which is preliminarily
brought to the form

. — 0,05 (1 + Q(pé) + 202 (1 — @) (3)
Y ol — )+ 0, (2 + ;) ’
do, _ 10205 (1 4 20)) 4 202 (1 — @,)]" [03 (1 — @) + 05(2 + )] B
ar (o (1 — ;) + 06, (2 + @)
_1oy05 (1 4 2095) + 205 (1 — @)l [05(1 — @) +- 62 (2 £ @3)’ )

[o5 (1 — ;) + 0, (2 + @)1

Taking account of the above values of o, and o5, the final expression for doy/dT is written
in the form
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where
do, o . doy _ EAexp(—E/RT)
dT Bil +a (T —273)) = dT ET?

The electrical conductivity of the two-component statistical system calculated from
the Bruggeman—Odelevskii generalized-conduction formula [1, 7] is in complete agreement
with the dependence introduced on the basis of the theory of the conduction of an effec-
tive medium [8]

Fu ™ 0, (6)

where ¢ = 1 — 6.

For the case of a dielectric subsystem considered here, the composition-—property
function of the statistical model is of threshoid type (with a threshold level equal to 2/3
for a cubic lattice), which is in good agreement with the numerous experimental data [9].
Taking into account that o, = 0 and ¢; < 2/3, the solution of Eq. (6) is written in the
form

g, — w30 7)
2 .
The TRC of the mixed structure is determined by the TRC of the conducting substructure
calculated from Eq. (5). This is confirmed by systematic tramsformation of an expression
of the form

Go = — 1/0,-dojdT. (8)

The electrical conductivity of the conducting subsystem, in the form of a semiconduct-
ing matrix with metallic inclusions, is calculated analogously.

Calculations are performed for typical parameters of fillers of precision resistive
materials: E = 1072 eV, a = 1073 deg™?, ¢, = 0.3, 0.4, 0.5. The influence of the constants
A and B on the TRC of the resistive material may be characterized by the product AB. It
is adimensionless parameter, which varies in the range 107°-10°.

The dependence of the TRC on the volume fraction of semiconducting ¢} and metallic ¢}'

inclusions (Fig. 1) shows that a resistive material with ''zero'" TRC may only be obtained

in a limited range of AB; 0.1-10. The dependences of the TRC on ¢4 and ¢4' obtained for

AB < 0 and AB > 10 may be explained in that both when AB < 0.1 (the electrical conductivity
of the metallic phase is higher than that of the semiconducting phase) and when AB > 10

(the opposite case), the resistance of the conducting subsystem may be written in the form
of a series of parallel combination of two conductors. In both cases, however, it is deter-
mined by the resistance of the matrix.

It follows from the temperature dependence of the TRC in the region of optimal compo-
sition (Fig. 2) that with increase in temperature the TRC of the resistive material changes
sign from negative to positive, reflecting the experimental U-shaped dependence of the re-
sistance on the temperature [10].

NOTATION

aM, electrical conductivity of matrix system; o., electrical conductivity of mixed sys-
tem; 0y, electrical conductivity of dielectric subsystem; ¢,, electrical conductivity of
matrix phase; o5, electrical conductivity of inclusions; ¢,, volume fraction of dielectric
subsystem; ¢y, volume fraction of conductlng subsystem; ¢35, volume of fraction of inclusions
with respect to matrix mater1a1 ¢3, volume fraction of semiconducting inclusions with res-
pect to matrix material; ¢3, volume fraction of metallic inclusions with respect to matrix
material; a, TRC of metal, oy, TRC of matrix system; oo, TRC of mixed system; B, re51st1v1ty
of metal at 273 K k, Boltzmann constant; A, electrical conductivity of semiconductor at
infinitely large temperature; E, activation energy of electrical conductivity of semicon-
ductor.
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MASS TRANSFER WITH "MEMORY' IN ELECTROCHEMICAL PROCESSES

L. 8. Kalashnikova UDC 541.138:66.015.3

Diffusion processes in porous electrodes are investigated on the basis of
mass-transfer equation with "memory.' The equation is analyzed with the
application of the Laplace transform.

The analysis of mass-transfer processes in porous electrodes is of major importance in
the investigation of many electrochemical processes, in particular the operation of electro-
chemical current sources. A complicated interaction takes place between the electric and
concentration fields in a porous electrode, where mass transfer is accompanied by electro-
chemical reactions. The large difference between the characteristic time constants of the
diffusion and electrical processes means that they can be considered independently. The
variation of the concentration field in the diffusion mode of operation of a porous elec-
trode is described by an equation of the form [1]

9 _ D*Ae— ke (1)
. Jt
This equation has been derived on the assumption that the expenditure or accumulation of
active substance as a result of electrochemical reactions takes place uniformly. However,
this assumption is an idealization, and in real electrodes the instantaneous mode of opera-
tion of the electrode is observed to depend on the nature of the process at previous times,
i.e., on the history of the process.

Mass transfer of this nature can be modeled if the following expression is used to des-
cribe the transfer flux [2]:

T
Gm = — D* gradc — g DD’ (v — 0) gradc(r, 6)de. (2)
0
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